学习方法 2021-07-27 250
第一章一元一次不等式和一元一次不等式组
一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
能使不等式成立的未知数的值,叫做不等式的解.不等式的解不,把所有满足不等式的解 在一起,构成不等式的解集.求不等式解集的过程叫解不等式.
由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组
不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。
等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.
二、不等式的基本
性质1.不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。)
性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.
性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、若a>b,则a+c>b+c;<2>、若a>b,c>0则ac>bc若c<0,则ac
不等式的其他性质:反射性:若a>b,则b传递性:若a>b,且b>c,则a>c
三、解不等式的步骤:
1、去分母;2、去括号;3、移项合并同类项;4、系数化为1。四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。五、列一元一次不等式组解实际问题的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。
六、常考题型:
1、求4x-67x-12的非负数解.2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.
3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。
第二章分解因式
一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2&plu