学习资料 2021-03-18 602
高中数学学习对大家来说很重要,想要取得好成绩必须要掌握好课本上的知识点,为了帮助大家掌握高中数学知识点,下面学大教育网为大家带来苏教版高一数学第一学期函数与方程知识要点,希望对大家掌握数学知识有所帮助。
函数的零点
(1)定义:
对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.
(3)函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
二二次函数y=ax2+bx+c(a>0)的图象与零点的关系
三二分法
对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
1、函数的零点不是点:
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.
2、对函数零点存在的判断中,必须强调:
(1)、f(x)在[a,b]上连续;
(2)、f(a)·f(b)<0;
(3)、在(a,b)内存在零点.
这是零点存在的一个充分条件,但不必要.
3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号.
利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.
四判断函数零点个数的常用方法
1、解方程法:
令f(x)=0,如果能求出解,则有几个解就有几个零点.
2、零点存在性定理法:
利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点.
3、数形结合法:
转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数.
已知函数有零点(方程有根)求参数取值常用的方法
1、直接法:
直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.
2、分离参数法:
先将参数分离,转化成求函数值域问题加以解决.
3、数形结合法:
先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.
学大教育网为大家带来了苏教版高一数学第一学期函数与方程知识要点,希望大家能够熟记这些数学知识点,更多的高中数学知识点请查阅学大教育网。
文章来源于网络,如有版权问题请联系我们删除!
推荐阅读 苏教版高一数学第一学期函数模型及其应用知识要点 苏教版高一数学第一学期函数的概念和图象知识要点 北师大版高一数学上学期知识要点:幂函数 高一数学知识点:方程的根与函数的零点 高考数学辅导资料-函数与方程及函数模型知识点 2016人教版高一数学必修一函数与导数知识要点
点击访问更多木玛升学网的 学习资料资讯
暂无数据