2017高考数学必考点【导数的运算】讲解

学习资料 2021-03-18 546

高考数学一直是很多考生头疼的科目,考生难以取得数学高分是因为没有掌握好考点,为了帮助大家掌握好数学考点,下面学大教育网为大家带来2017高考数学必考点【导数的运算】讲解,希望大家用心记住这些数学考点。

高考数学导数考点

1.单调性问题研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。

1.单调性问题

研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。

2.极值问题

求函数y=f(x)的极值时,要特别注意f'(x0)=0只是函数在x=x0有极值的必要条件,只有当f'(x0)=0且在xx0 时,f'(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时, 在 x=x0处也可能有极值,例如函数 f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。

还要注意的是, 函数在x=x0有极值,必须是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f'(x)=0所求的驻点是否在函数的定义域内。

3.切线问题

曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展理性思维。关于切线方程问题有下列几点要注意:

(1)求切线方程时,要注意直线在某点相切还是切线过某点,因此在求切线方程时,除明确指出某点是切点之外,一定要设出切点,再求切线方程;

(2) 和曲线只有一个公共点的直线不一定是切线,反之,切线不一定和曲线只有一个公共点,因此,切线不一定在曲线的同侧,也可能有的切线穿过曲线;

(3) 两条曲线的公切线有两种可能,一种是有公共切点,这类公切线的特点是在切点的函数值相等,导数值相等;另一种是没有公共切点,这类公切线的特点是分别求出两条曲线的各自切线,这两条切线重合。

4.函数零点问题

函数的零点即曲线与x轴的交点,零点的个数常常与函数的单调性与极值有关,解题时要用图像帮助思考,研究函数的极值点相对于x轴的位置,和函数的单调性。

5.不等式的证明问题

证明不等式f(x)≥g(x)在区间D上成立,等价于函数f(x)-g(x)在区间D上的最小值等于零;而证明不等式f(x)>g(x) 在区间D上成立,等价于函数f(x)-g(x)在区间D上的最小值大于零,或者证明f(x)min≥g(x)max、 f(x)min>g(x)max。因此不等式的证明问题可以转化为用导数求函数的极值或最大(小)值问题。

2017高考数学必考点【导数的运算】讲解是学大教育网为大家精心总结的,希望大家能够在复习数学考点的时候多下功夫,这样就能在高考数学考试中取得满意的成绩。

文章来源于网络,如有版权问题请联系我们删除!

推荐阅读 2017高考数学必考点【向量数乘运算及几何意义】讲解 2017高考数学必考点【集合的基本运算】整理 2017高考数学必考点【向量数量积的运算】整理 2017高考数学必考点【函数的极值与导数的关系】整理 2017高考数学必考点【导数的概念及其几何意义】 2017高考数学必考点【空间向量的数乘运算】整理

点击访问更多木玛升学网的 学习资料资讯

上一条: 2017年高考数学考试答题的十二个方法整理 下一条: 2017高考数学必考点【空间向量的正交分解及坐标】讲解

网友评论 共0条

暂无数据